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ABSTRACT

A method has been developed to investigate the sensitivity of the solutions
of large sets of coupled, non-linear rate equations to uncertainties in the rate
coefficients. This method is based on varying all the rate coefficients simul-
taneously througn the introduction of a parameter in such a way that the output
concentrations become periodic functions of this parameter at any given tine t.
The concentration of the chemical species are then Fourier analysed at time t.

We show via an application of Weyl's ergo.sic tneorem that a subset of the Fourier
'oC

coefficients is related to <§El>’ the rate of changz of the concentration of
species i with respect to the &ate constant for reaction ¢ averaged aver the
uncertainties of all tne other rate coefficients. Thus a large Fourier coeffi-
cient corresponds to a large sensitivity, a small Fourier coefficient corresponds
to a small sensitivity. The amount of numerical integration required to calcu-
late these Fourier coefficients is considerably less than that required in test.
of sensitivity where one varies one rate coefficient at a time, while holding

all others fixed. The Fourier method developed in this paper is not limited

to chemical rate equation, but can be applied to the study of the sensitivity

of any large system of coupled, non-linear differential equations with respect

to the uncertainties in the modeling parameters.



I. Introduction

Sets of coupled, non-linear rate equations arise 1n a number of disciplines.
A classic example is that of chemical rate equations. In the study of combustion,
air-pollution, upper atmosphere phenomena and chemnical lasers as many as 100
coupled rate equations involving some 50 separate species may be needed to
account for tne properties of such systems. One is “hen faced with the problem

of solving a large set of coupled, non-linear differential equations of the form
¢ _ ¢[=
g - F[ci{k}] (1.1)

when ¢ is a vector of concentrations, {k} a set of rate coefficients and ¥ some
complicated function of the concentrations. While one may prove existence and
stability iheorems for the equilibrium point(]), tne only way to solve thege
equations, i.e. tn obtain all the species concentrations as functions of time,
is through the use of a high-speed computer.

Unfortunately, the rate coefficients (or cross sections) for many reactions
are not known with high accuracy and indeed may be uncertain by one or more
orders of magnitude. This gives rise to the very important problem of
"sensitivity" which may be defined as the effect of uncertainties in the rate
coefficients on tne calculated concentrations of all the various intermediate
and produ:t species. The uncertainty in the rate coefficients of certain
"important" reactions in tne reaction scheine inay have a significant effect on

the output functior (for instance, concentration at time t), while uncertainties

of the same magnitude in rate coefficients of "unimportant" reaction in the

reaction scneme may hardly effect the output function. The reliability o the




output numbers clearly cannot be established without knowledge of the sensitivity
of the output data to the uncertainty in the input parameters.

The problem is to find a practical method of determining the effects of
the uncertainties in the rate coefficients on the solutions of the rate equations.
Since we are interested in Lhe situation where the uncertainties in tne rate
coefficient may be orders of magnitude, linearization schemes are not appropriate.
A "brute force" method of investigating the sensitivity is not feasible as can
readily be seen from the following example. Suppose we have a reaction scheme
which has n coupled reactions involving m different chemical species. Let us
furthermore assume that we wish to calculate the concentrations of the m species
at some time t for z different values each of tne 2n rate coefficients. If we
now change one rate coefficient at a tinie while holding all the others fixed,
we would have to carry out 22” integrations of the rate equation (1.1) to time t.
For the m different species, this procedure will give rise toc a print-out of
m(z)2n concentrations. If we know to a good accuracy the equilibrium constants
for all the reactions and apply the principle of detailed balance, the number
of independent rate coefficients will be reduced to n and we would have to carry
out 2" integrations up to time t for each species m. In either case, for n
large, it is obvious that the time and expense involved in such an analysis of
sensitivity is pronibitive and the print-outs so numerous as to defy a simple
analysis of the results. Clearly, one needs to cevise some more poweiful
method for the study of sensitivity.

Our approach to this problem is to ask for a less dectailed description of
the effect of rate coefficient uncertainty on the output function at any given

time. Ve vary all the rate coefficients simultaneously so as to explore the



entire space of uncertainties ir the rate coefficient set {k}. As will be seen
below, this turns ocut to be equivalent to varying a single rate coefficient and
then averaging the attendant concentration changes over the uncertainties of all
the other rate coefficients, wnere we express this uncertainty in terms of a
probability distribution. Our approach is thus related to a "mean field" theory
where we represeint the fluctuations of tne field Ly the uncertainties in the
(n-1) rate coefficients over which we average.

To carry out this program, we relate each rate coefficient ki to a frequency
o and introduce a parameter s which simultaneously varies all the rate coef-

ficients in such a way that the concentrations at a fixed time become periodic

functions of s. The concentrations can then be Fourier analyzed. We then show
that a certain subset of these Fourier coefficients can be related to the first
partial derivative of tne concentration <, of species i with respect to a rate
coefficient kl averagded over the uncertainties of all tne other rate coefficients.

. ocC.
A large value of tne Fourier coefficient Ai]) tnen shows that 3Fl> is large,
L 7
i.e, Lhe effect of 4 change in the 2'th rate coefficient on the concentration
of species i is significant. Conversely, a small Fourier coefficient Ai])
ac. J
u oL : LSS : = - -
indicates tnat.<éﬂ?—/ is amall, i.2. the effeet 'of the variatibwe oF e §“Th

B
rate coefficient on the concentration of species i is small. In order teo calcu-
late these Fourier coefficients, we nmust integrate the rate equations numerically
up to the desired time for each value of the parameter s. The number of s values
which we include in our paranmeter set determines the accuracy to which we can
calculate the Fourier coefficient; the larger the set of s values, the more

accurate the determination of the Fourier coefficients.

Since we must still perform numerical integrations of the rate equations




(1.1), the question arises wiy this methcd is to be preferred to the more
direct method of varying each rate coefficient separately while keeping all
others fixed. As will be shown in paper 1 which deals primerily with the
computer calculations, the number of integrations required by the Fourier
method is O(n") where r is a small integer (r<10) which depends upon the choice
of tne frequencies wis i=1,2,...,n. It can readily be verified that for n,

z large, nr<(z)n. The computational economy of this method of analysis thus

becomes more pronounced as n, the number of reactions, increases. The reason

for this reduction in the number of required integrations up to time t is to
be fourid in the fact that in the Fourier method we sample the c(k) space at

a set »f points determined by the values of the set {s} and the vector o,
whereas the "brute force" method involves naither sampling nor the simultaneous

variation of the set of rate coefficients ik! and thus requires many

more integrations of the rate equations. As will be clear from the body of

the paper, this sampling in a certain sense corresponds to the averaging over
all tne rate coefficients. The reduction in the number of required integrations
is thus intinately related to the use of a "mear field" theory.

Our results are presented in two papers, I and II. In paper I, we present
the theoretical basis of our method without explicit reference to the verifying
computer experiments. In paper I[I, we present the results of our computer
calculations as well as a detailed discussion of the problems involved in such
calculations.

It should be pointed out that the utility of this Fourier analysis method
of testing sensitivity extends beyond the confines of chemical kinetics and
beyond the confines of differential equations. Large sets of coupled, non-
linear equations are used in many fields such as economics, population dynamics,

weather fore~asting, systems analysis, operations research, etc. for model ing

& B




and predictive purposes. As has been pointed out by a number of investigators,
it is important that sensitivity tests be carried out on such systems to
identify the critical parameters and to validate the applicability of the
models. The method developed here can be applied to any set of equations,
differential, integral, algebraic, etc., which yield an output as a complex
function of many parameters. In fact, we have used an analytic function of
several variables to test some of our ideas. We plan to apply this Fourier

method to the analysis of other complex systems in the near future.



II. Fourier Analysis

The rate equation for coupled chemical reactions which obey the law of

mass action can be written in the form

] dC- m 1 n
i = 1 v v
W ° Z Vol {kr il I g, Tl = k-r‘ || &4 r,i] (2.1)

r=1 =] 2=1
L=l . . i)

where ci(k],...kn;t) is thz concentration of species i at time t, Ve i Z VT Vg

is the stoichiometric coefficient of tne species i in reactionr,with r=1,...,n

labeling the different reactions in the reaction system, and where kr(k_r) s

[}
the forward (backward) rate coefficient for reaction r. The coefficients v

and v, ; are non-negative integers so that the stoichiometric coefficient
3

[

Vi defined above can be positive, negative or zero. From the form of the rate
equations (2.1) one can prove that the concentrations are bounded and non-negative,
that they are continuous functions of the time and the rate coefficients and
that an equilibrium point exists.(])

In order to determine the effects of uncertainties in the rate coefficients

ky

p Oon the concentrations c; at time t a systenatic method for varying the k's

must be developed. We define

k= k{o)eY; (i=1,....n) (2.2)

and

u.
I

fi(S‘in uiS) (2.3)
vhere kgo)is the "best value" of the rate coefficient (i.e. the one which the
investigator believes to be the best available value based on experiments or

calculations), the "frequency" w; is a positive integer, s is a paraneter and fi

=




is a functior to be determined. The introduction of the parameter u and the
form of Eq. (2.2) permits one to effect readily order of magnitude changes in
the rate coefficients. The form of equation (2.3) permits one to vary simul-
taneously all the rate coefficients by varying the parameter s. The rapidity
of the variation is determined for each ki by the magnitude of the ui's. The
w; are chosen to be positive integers in order that the concentrations at a

fixed time t become periodic functions of s with period 2n:

ci(s;t) = ci(s + 2n3t) (2.4)

In the developmert to follow we suppress this dependence of the concentrations
on time, it being understood that the analysis is carried out for a fixed time t.
The concentration as a function of s descrices a closed path. That is,
for each i and for every value of s we obtain a point in k space with value
ci(E); as s changes by 2n we return to the same values of % and U, [see eqs.

(2.2) and (2.3)]1, and, from equation (2.4), to the same value ci(s). Since

ci(s) is periodic on 2r wc may expand it in a Fourier series

LB
\ ]
€:(8) = -%~—-+ :E: ( g £e, * B>1) cos rs) , (2.§)
r=

1

In the analysis presented below we are interested only in the Fourier sine
coefficients Ar that correspond to the original input frequencies Wi i.e. the

coefficients given by

)

. 2n
A(1) = %.j. ci(s) sin w,s ds : (2.6)
0

LR, ...,

(i)

2

e now wish to relate tne Fourier coefficients Aw to the effect of tne




variation of tne rate coefficients kr and the concentrations Ci' In order to

do tnis it is necessary to relate the s- space integral of Eq. (2.6) to a n-

dimensional integral over the entire U space. It can be shown that if the

. > . . . .
entire U space is covered densely as s is varied, then the integrals over the

b . 3 13 . 13 . 3
s- space and the u space yield identical results. fnis is just a statement
of tile argodic tneorem winich permits one to equate time and phase space averates

in statistical mechanics.(z) If the frequencies w; in Eq. (2.3) were chosen to

be inconmensurate, then the function ci(s) i.e. the concentration as a function

of the parameter s, would be an almost pariodic function. This implies that

e

the path in the space R"(d), where the 8's are defined by

Oi= wys (mod 27) (279

returns arbitrarily close to any initial point as s—=. One could then equate
the s- space integral with the integral over tne n- dimensional @ space as was
first proved by Hey].(3) However, the use of an incomuensurate set of frequencies
w; in Eq. (2.3) would require that the numerical evaluation of the Fourier
coefficients sz of Eq. (2.6) be carried out over an infinite period. This
clearly is not a feasible procedure on any known computer.

It is for tnis reason that we introduce integer frequencies vy i Eq. 12.8),
Their use leads to a finite period (0 to 2r) analysis wnich can readily be
handled an a computer. Tnis will give rise to an error in the analysis since

now the “"phase point" will no longer censely cover the U space as s is varied

and the s-space and ¢ space integrals therefore do not yield identical results.

Let us for tne moment ignore this error and use Weyl's theorem for our

periodic function c(s). We write

b (o

() 2 2m 27 i
At ——nf f l”[ dOJ. ci(O],...,On) sin 8, y (2.8)
(2n) % j=1

9




This expression can be put in a more suggestive forn as foilows. The 2£'th

integral is rewritten by integration by parts as
1 2n ‘ 1 2
z—ﬂJ dQl c(Q]....Qn; sin gz = ﬂf dgn a@ cos Q : (2.9)
(o (o

where the boundary term has vanished by the periodicity of the integrand. The

use of £q.(2.9)then permits us to rewrite £q.{(2.8} as

(_| ) 2 2 aC
Aw (2n)” J- IM dOJ ag cos O : (2.10)

Tne © space integral must now be related to the If space integral. The transfor-
mation is (see Eqs. (2.3} and (2.7))
of . (sin 9.)

—m— cos QJ dgj (2]])
where we require that fj be a monotonic function of its argument. Then
ocC.
o £, (+1) f(+1) [“L du; cos 0, gJL
‘ (0 ] cos 0y St
Jts J

In order to obtain a definite relation oetween Ai]) and 3c;/du, we must choose

X
some particular form for the function fj(sin Oj). There are several choices which
lead to useful expressions for the Qfl); as will be seen below, a particularly

L
advantageous choice is to set

(sin 6,
afJ(SIn J)

o ol
'7;7?ﬁ77;;-' cos Oj = 53-, (2.13)
where a; is a parameter. The use of £q. (2.13) in Eq. (2.12) leads to

-10-




e ————

A1) 2 - gl o¢;
R I j j‘ 'ﬂ'dujajcosgja—u—

Integration of Eq. (2.13) yields

] _ . 1 + sin 8,
fJ(S1n gj) BB ?53' [I sin @ ]

and also indicates the range of integration in Eq. (2.14).

as a function of u; from Eq. (2.15) gives for tq. (2.14)

J

$oo +u
Aii) 5 j. j' 'fT'du oy

osh a.u. du
b RN

Since

4o n du 5 5
Tr j cosh A y
Lo Jy
we obtain as our finatl result

Ail) = %; (aci/aul)

where the bracket in Eq. (2.18) is defined by

j. J. ;ft p(u ; a ) (u‘,...

Expressing cos ©

Sl ) dui

(Y(u],...,u 1 = = -
J;)...j;n ;EE p( ujs aJ) du,
and
i
plusia;) = —Ssraa

J ]

(2.14)

(2.15)

3

(2.16)

(817

(2.18)

(2.19)

(2.20)

The function p(u.;aj) can be interpreted as a distribution function in U space

J

which weights the uncertainty in the rate coefficients.

-N-

Equation (2.18) is the




desired relation between the Fourier coefficient A£1) and the change in the
)
concentration of species i with a change in the ¢'th rate coefficient, aci/aun,

averaged over the changes of all the other rate coefficients.

The particular form of fj (sin Qj) that we have chosen, Eq. (2.15), has
lead to a weight function p(uj;aj) for each rate coefficient, Eq. (2.20), which
has several convenient properties. As a function of u,, the function p(u-;aj)
is symmetrically bell shaped about “j=0 corresponding to kj=k§°), thie “best"
value of the rate coefficient kj' As aj, which is a parameter at our disposal,
is increased, the weight function p(uj;aj) narrows about uj=0; this corresponds

to a decreased spread in the values of the rate constant kj’ i.e. it corresponds

to a narrower range of the uncertainty of kj around k§°). In the limit as aj—wn,

one obtains

lim  p(u.3a.) = né(u,) (2.21)
el o B

J

where 6(x) is the delta function of argument x which implies that the rate con-
stant is known with certainty to be kgo). When some information is available
on the spread and distribution about the value of the rate coefficient k. about

its "best" value kgo), one can determine the aj through the standard deviation

of the values in U space

from which it follows that

]
ey
(uj)

NI



The parameter aj thus permits us to introduce explicitly the spread of uncertain-
ties in the values of the rate coefficients into our analysis.

To calculate the Fourier coefficients qﬁi) we must first choose a suitable
set of mj's and aj's. What constitutes a "suitable” set of w's will be discussed
in the next section in conjunction with the error aralysis and in more detail
in paper II. The set of wj'S defines the uj's as a function of s according to
Eqs. (2.3), (2.7) and (2.15). For each value of s one obtains a value of the
concentration ci(k]""’kn)' In principle one can then compute the Aﬁi) to any

)
desired accuracy by taking enough values of s,

s=89 g2, (2.24)

where m is some integer.

It is important to point out that our main interest is in identifying those
rate coefficients whose variation significantly effects the concentration <,
of a species i at time t, and those rate coefficients whose variation has only
a minimal effect on the species concentration Py Thus if one of the Fourier

coefficients, say A£1), is one or nore orders of magnitude larger than all

other coefficients A£1), 22 1,2;5...,n, (2#j), than the variation of the it

-

2
rate coefficient kj’ clearly has a larger effect on the concentration ci(t)

than the variation of the other rate coefficients. If on the other hand all

the coefficients Ail), 2 =1,2,...,n, are of the same order or magnitude,
L

then tie concentration of species i at time t, ci(t), is effected essentially
equally by the variation of any of the rate coefficients kz'
One problem with the above analysis must be pointed out. The Fourier

coefficient Aii) of Eq. (2.18) may be small either because aci/aul is small over
)




-

the whole range of integration of Eq. (2.19), which is the case discussed above,
or because aci/au2 charges sign one or more times in the range of integration.
Thus, a small value of Ai;) does not necessarily imply that the concentration c,
is insensitive to changesvin the rate coefficients. The remedy for this ditri-
culty would be to find a relation between the Fouricr coefficients, or a combination
of Fourier coefficients, and an everywhere positive (or everywhere negative)
function of the rate of change of the concentrations with rate coefficients, such
as for instance ((aci/aun)z). We have, however, not been able to establish
such a relationship and it seems doubtful that a simple relationship of this form
exists. ln carrying out computer calculations it should, however, not be too
difficult to verify whether ac]./au2 at any given time t is monotone or not in
the range of integration over the u space.

Thus while one can assert that a iarge \Sj) implies nigh sensitivity of the
concentration of species i with respect to cha;ges in the rate coefficient kg,
the converse statement does not necessarily folloy without checking on the mono-

tonicity of ac{auias discussed above.




e aE—

I11. Choice of the Frequencies W

As we have mentioned aoove, the application of Weyl's theorem in going from s

space, Eq. (2.6), to the u space, Eq. (2.16), via the 6 space, Eq. (2.8), must lead to

an error in the analysis since we nse commensurate (integer) frequencies. This

error can be minimized by a judicious cnoice of the integer frequencies v, and

the number and magnitude ot the m values of the parameter s given by Eq. (2.24).

We limit ourselves here to some qualitative remarks wiicn will, however, clearly

indicate the nature of tne proilen.

The integer frequencies 0 lead, according to Egs. (2.7) and (2.24), to @

q takes on its

covering of the n dimensional @ space by an array of points as

integer values q=1,2,.. 4. Clearly one obtains a better coverage of the [¢ space

and thus reduces the error in applying Weyl's theorem if one can increase the

density of points in the n-dimensional nypercuve and if one can distribute the

points uniformly within the space. Since » and q are both integer, the points

%5 (mod 27) will form a regular lattice in 9 space. Our objective will be to

make this point lattice waich is completely generated Dy a unit cell as uniform

as possible in all n directions by a judicious choice of the w's. As our measure

of uniformity we take a. nypercubic unit cell. Without further information about

tne benavior of the output function tnis seems the nost reasonable choice.

For a fixed number m of s points, cnosen for computational convenience,

we will try to find a vector 5 (of tne infinite set of w's) which gives rise

to a nypercubic unit cell. Once having done this we can assert, without 10Ss

lies along one edge of this hypercubic unit cell whose

»

of generality, that %%ﬁ
length is giﬁfd-. There are now two ways to compute tne volume V of the

-15-
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imit cel). In the n dimensional 8 space, it follows from the above construction

that

~>| n

v=(2“‘w | (Y
m / \ .
30t we also know that tne total volume of the n-dimensional 8 space is (2 )”.

Since there are m unit cells in that space, it follows that

77 n
Y & (2n)

Eauating (3.1) and (3.2) then yields

n-1
n

&l = m (3.3)

rar tne relation between the winimum length of tne vecto*.’, the dimension n
and tne number of s points, m, for a point lattice composed of hypercubic
uniit cells.
Tre condition expressed in equation (3.3) yields important insigint into
the judicious cnoice of the frequencies w5 For systems with large dimensions,
i.e. a large number n of rate coefficients (or coupling parameters in general),
|$| approaches m. Thus, the choice of the number m of s points for the numerical
computatior determines the value of % and thus guides one in the choice of
the ”ils' Since one would expect the error in the analysis due to the use of
integer frequencies Wy to be of order 1/m, i.e. inversely proportional tc tne number
of unit cells, it is evident that one should cnoose a large value of m to carvy
out the calculations. Tnis in turn implies from Eq. (3.3} a large ME

The analysis leading to Eq. (3.3) is based on the construction of unit

0 35 (> g 3
cells wiich are exact hypercubes. 5ince [w|, I and n are all integers 1t may




not be possible to fulfill condition (3.3) exactly for all {arbitrary) choices
of mand n. It is easy to show this. Let us, for instance, square both sides
of Eq. (3.3) and let n = 5. We are then required to find an integer m such that
we can express a sum of n squares, |$|2, as m8/5. Clearly, this is possible,
if at all only for certain special values of m. To be more realistic, we should
weaken our criteria for uniformity of the point lattice by stipulating unit
cells which are as close as poscible to hypercubic and then rewrite Eq. (3.3) ot

n-1 (3.4)

o] = A
For n >> 1, tor which both (3.3) and (3.4) reduce to |J| = m, it should be
possible to obtain a more nearly exact hypercubic unit cell.

The question as to the "optimum" choice of the w's has been considered by
a number of authors, using a different approaci from tnat presented above, in
connection with the general problem of the approximate evaluation of multi-
dimensional integrals via discrete summations(4). Korobov's book has tables
of wi‘s for a given number of points m (for m prime) and dimension n up to
n = 10. These tapbles ure reprinted in the book by A. H. Stroud. It is inter-
c<ting and comforting to note that although these tables were computed from
completely different criteria tnan those employed by us, the Korobov &'s indeed
generate hypercubic unit cells to a very good approximation for all his sets of
for which we have carried out the appropriate calculations.

Korobov's analysis of the error in the use of integer frequencies yields
explicit prescriptions for calculating the "optimum" set of %'s as given in his
tables. Our approach presented abuve does not yield such an explicit algorithn.
We plan to develop such an algorithm and then compare our sets of » with those

of Korobov in a subsequent publication.
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frequency
As stated above, if one wishes to decrease the error in the integer A analysis,

one should use a large number m of s points and thus a large |$|. It cah
readily be verified from Eq. (2.6) that for large w; one needs to evaluate
c(s) for a larger number of s values in order to obtain an accurate value for

the Fourier coefficient A(1). This requires more extensive computer calculations.
w
L

A reasonable compromise between these two effects needs to be adopted.

The transformation from u space to J space as given by Egs. (2.3) and (2.7)
will also effect the error term since the specific transformation whicn is chosen
determines the rate of ciiange of the function c(s) as a function of s. We are
faced nere with an interesting probiem in compensating effects. Either the
transformation u, = ui(G) is singular or the weight function p(ui;ai) is singu-

lar at one or more values of us. For the chosen transform it is readily veri-

fied from Egs. (2.15) and (2.20) that u, diverges at @ = 1/2 and 0 = 31/2, but

at these points p(ui;ai) = 0. This same effect will be found for aoy transfor-

mation and its associated weignt function. Tnus in tne regions of [ space

where the transformation is divergent the associated weight function will

alwvays compensate. We are therefore led to expect that the choice of the
transformation function will not significantly effect the final numerical results.

This is born out by the data presented in paper II.
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